2[(x+4)*x]+2[(x+8)*x]+2[(x+4)*(x+8)]=262

Simple and best practice solution for 2[(x+4)*x]+2[(x+8)*x]+2[(x+4)*(x+8)]=262 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2[(x+4)*x]+2[(x+8)*x]+2[(x+4)*(x+8)]=262 equation:


Simplifying
2[(x + 4) * x] + 2[(x + 8) * x] + 2[(x + 4)(x + 8)] = 262

Reorder the terms:
2[(4 + x) * x] + 2[(x + 8) * x] + 2[(x + 4)(x + 8)] = 262

Reorder the terms for easier multiplication:
2[x(4 + x)] + 2[(x + 8) * x] + 2[(x + 4)(x + 8)] = 262
2[(4 * x + x * x)] + 2[(x + 8) * x] + 2[(x + 4)(x + 8)] = 262
2[(4x + x2)] + 2[(x + 8) * x] + 2[(x + 4)(x + 8)] = 262
[4x * 2 + x2 * 2] + 2[(x + 8) * x] + 2[(x + 4)(x + 8)] = 262
[8x + 2x2] + 2[(x + 8) * x] + 2[(x + 4)(x + 8)] = 262

Reorder the terms:
8x + 2x2 + 2[(8 + x) * x] + 2[(x + 4)(x + 8)] = 262

Reorder the terms for easier multiplication:
8x + 2x2 + 2[x(8 + x)] + 2[(x + 4)(x + 8)] = 262
8x + 2x2 + 2[(8 * x + x * x)] + 2[(x + 4)(x + 8)] = 262
8x + 2x2 + 2[(8x + x2)] + 2[(x + 4)(x + 8)] = 262
8x + 2x2 + [8x * 2 + x2 * 2] + 2[(x + 4)(x + 8)] = 262
8x + 2x2 + [16x + 2x2] + 2[(x + 4)(x + 8)] = 262

Reorder the terms:
8x + 2x2 + 16x + 2x2 + 2[(4 + x)(x + 8)] = 262

Reorder the terms:
8x + 2x2 + 16x + 2x2 + 2[(4 + x)(8 + x)] = 262

Multiply (4 + x) * (8 + x)
8x + 2x2 + 16x + 2x2 + 2[(4(8 + x) + x(8 + x))] = 262
8x + 2x2 + 16x + 2x2 + 2[((8 * 4 + x * 4) + x(8 + x))] = 262
8x + 2x2 + 16x + 2x2 + 2[((32 + 4x) + x(8 + x))] = 262
8x + 2x2 + 16x + 2x2 + 2[(32 + 4x + (8 * x + x * x))] = 262
8x + 2x2 + 16x + 2x2 + 2[(32 + 4x + (8x + x2))] = 262

Combine like terms: 4x + 8x = 12x
8x + 2x2 + 16x + 2x2 + 2[(32 + 12x + x2)] = 262
8x + 2x2 + 16x + 2x2 + [32 * 2 + 12x * 2 + x2 * 2] = 262
8x + 2x2 + 16x + 2x2 + [64 + 24x + 2x2] = 262

Reorder the terms:
64 + 8x + 16x + 24x + 2x2 + 2x2 + 2x2 = 262

Combine like terms: 8x + 16x = 24x
64 + 24x + 24x + 2x2 + 2x2 + 2x2 = 262

Combine like terms: 24x + 24x = 48x
64 + 48x + 2x2 + 2x2 + 2x2 = 262

Combine like terms: 2x2 + 2x2 = 4x2
64 + 48x + 4x2 + 2x2 = 262

Combine like terms: 4x2 + 2x2 = 6x2
64 + 48x + 6x2 = 262

Solving
64 + 48x + 6x2 = 262

Solving for variable 'x'.

Reorder the terms:
64 + -262 + 48x + 6x2 = 262 + -262

Combine like terms: 64 + -262 = -198
-198 + 48x + 6x2 = 262 + -262

Combine like terms: 262 + -262 = 0
-198 + 48x + 6x2 = 0

Factor out the Greatest Common Factor (GCF), '6'.
6(-33 + 8x + x2) = 0

Factor a trinomial.
6((-11 + -1x)(3 + -1x)) = 0

Ignore the factor 6.

Subproblem 1

Set the factor '(-11 + -1x)' equal to zero and attempt to solve: Simplifying -11 + -1x = 0 Solving -11 + -1x = 0 Move all terms containing x to the left, all other terms to the right. Add '11' to each side of the equation. -11 + 11 + -1x = 0 + 11 Combine like terms: -11 + 11 = 0 0 + -1x = 0 + 11 -1x = 0 + 11 Combine like terms: 0 + 11 = 11 -1x = 11 Divide each side by '-1'. x = -11 Simplifying x = -11

Subproblem 2

Set the factor '(3 + -1x)' equal to zero and attempt to solve: Simplifying 3 + -1x = 0 Solving 3 + -1x = 0 Move all terms containing x to the left, all other terms to the right. Add '-3' to each side of the equation. 3 + -3 + -1x = 0 + -3 Combine like terms: 3 + -3 = 0 0 + -1x = 0 + -3 -1x = 0 + -3 Combine like terms: 0 + -3 = -3 -1x = -3 Divide each side by '-1'. x = 3 Simplifying x = 3

Solution

x = {-11, 3}

See similar equations:

| n^2+4n-30=0 | | 1/5A+1/3=14/15 | | x^2+4x+x^2+8x+x^2+4x+8x+16=262 | | 3x+11=5x+3 | | -4.2p=12.6 | | 4x*2y=4 | | 2x-34=23 | | -70+12y=105 | | x^6+24x=246 | | -y=-x+3 | | 3/21(3/2)=9/42 | | x+24x=246 | | (t2-5t-36)/(t-9) | | 1/4E+1=8/3 | | Y+1=-2x | | -6=-2+2w | | -2.1=0.84-4.2x | | 4x-(22-2x)=14 | | m=-5-(-7) | | 3/5P-21=45 | | m=7-(-5) | | 5/3n-23/6n=-13/9 | | 15=40u-48 | | 95=25+B+18 | | 35=(-5)+2x-7x | | 2x-8(8x-6)=-21+7x | | 6x-7y+3a= | | 4x+b=a | | 8+4x=-20 | | -3c+60=18c-108 | | x^2+11x=80 | | 299.32=C+84.34 |

Equations solver categories